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Abstract

This paper considers an algorithm for synthesis of opti-

mal controllers for full information feedback. The syn-

thesis procedure reduces to a single linear matrix inequal-

ity which may be solved via established convex optimiza-

tion algorithms. The computational cost of the opti-

mization is investigated. It is demonstrated the problem
dimension and corresponding matrices can become large

for practical engineering problems. This algorithm repre-
sents a process that is impractical for standard worksta-

tions for large order systems. A flexible structure is pre-

sented a.s a design example. Control synthesis requires

several days on a workstation but may be solved in a

reasonable amount of time using a Cray supercomputer.

Introduction

Flexible structures present interesting and difficult prob-

lems to control engineers. Lightweight structural ele-

ments give rise to lightly damped, often closely_spaced
natural frequencies. Linear, time-invariant mathemati-

cal models of these structures do not accurately repre-

sent the true system. Uncertainty is included to rep-

resent unmodeled dynamics and high frequency modes.
Parametric uncertainty may also be included to repre-

sent unknown coefficients in the state-space models such

as natural frequency and damping coefficients.

There are many control design techniques for synthesis of

output feedback controllers of flexible structures. Con-

trollers for the Middeck Active Control Experiment have

been based on LQG and 7_2 theory along with an ap-
proach to maximum robustness to real uncertainty using
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Popov multipliers [12]. "H.o and _ controllers are synthe-
sized for the NASA - Langley Minimast Structure [4]. An

approach to attenuate modal vibrations is researched us-

ing eigenstructure assignment to control the eigenvectors

that determine mode shape [26].

Full information feedback is an optimal feedback config-

uration that provides direct measurements of all states
and disturbances to the controller. Packard et al demon-

strate optimal full information controllers may be com-
puted to minimize a /_ upper bound for systems with

complex uncertainty [21, 22]. These results are extended

to compute optimal full information controllers that di-

rectly account for additional information provided by

purely real uncertainty in the synthesis algorithm [3].

The synthesis procedure involves the solution to a linear

matrix inequality (LMI). LMI's have received a great

deal of attention in recent systems and controls litera-

ture [1, 7, 8]. LMI minimization problems may be solved

using standard convex optimization techniques. The El-

lipsoid Method and the Method of Centers are readily

suited to LMI optimization [7].

This paper considers the LMI minimization for synthesis

of optimal full information controllers of a high order

flexible structure. There are two main results presented.

• A globally optimal/_ controller is synthesized for
a flexible structure.

• Large dimension LMI optimization is solved on a

Cray supercomputer.

Vibration attenuating controllers are computed for a.

flexible structure. It is desired to attenuate the response

at 11 natural frequencies between 0 and 70 (rad/sec).

The controllers must be robust to parametric uncertainty
in the modal damping coefficients and input muitiplica-

tive uncertainty. A globally optimal full information con-
troller is compared to an output feedback controller com-

puted using D-Kiteration. Standard workstations are
impratical for the optimal controller synthesis for the full

order model due to the large computational cost. A Cray
supercomputer is able to compute the optimal controller

in considerably less time using a vectorized algorithm.



Robustness with Real/Complex Uncertainty

Define z E R _" as the vector of states, z E R"- as the

vector of errors, y E R n' as the vector of measurements,
d E R '_' as the vector of disturbances and u E R n" as

the vector of control inputs. The state-space description

of a linear time-invariant plant can be represented as

z = C1 Ell Ez2

y (72 E21 E2_ u

where A E Rn'xn',B1 E Rn'xn_,B2 E Rn'xn-,C1 E

R '_'x'_', C2 E tt "'x"' , and the E matrices of appropri-
ate dimensions.

Define P as the Laplace transform of this system,

P21(s) P_2(s) J

E,, E,2 ] + r c, ]= E21 E2_] LC2
B2 ]

Define S(P) as the set of all real, rational, proper con-

trollers, K(s), which stabilize the closed-loop system. In-
troducing a controller into the system leads to the fol-

lowing linear fractional transformation (LFT).

Ft(P, K) = Pzz + P12K(I - P2_K)-IP_,

This LFT represents the closed-loop transfer function

with the lower loop of P closed with the controller K.

Analyzing performance using the infinity norm leads to

the following minimization problem.

inf lift (P, K)lloo
XeS(P)

This is an 7_oo optimal controller synthesis problem
• d .

which has been solved using state-space equatmns [9, 11].

The structured singular value, #, can be used to deter-
mine robustness of the closed-loop system to structured

modeling uncertainty and the achievable performance

level in the presence of uncertainty. The uncertainty is
allowed to include both complex and real parametric un-

certainty.

The uncertainty description is structured with two types

of blocks. The blocks are repeated scalar or full block

matrices. Let integers m,n,p define the number of real

scalar, complex scalar, and complex full blocks. Define

integers Rz,...,R,n such that the i°. repeated scalar

block of real parametric uncertainty is of dimension
R_ x R_. Define similar integers Ct,. •., C, to denote the

dimension of the complex repeated scalar blocks. The

structured uncertainty description /X is assumed to be

norm bounded and belonging to the following set.

d, = {diag (6_I,, ...6_I,. $Ct Iv, ...6_Ic. At ...&,)

: 87• a,6, • C,/X,•

Real parametric uncertainty is allowed to enter the prob-

lem as scalar or repeated scalar blocks. Complex uncer-
tainty enters the problem as scalar, repeated scalar or
full blocks.

The function # is defined as

1
#_(M) =

min{_(A) : det(I-MA)=O}

The value of p depends on the block structure of _,. Up-

per and lower bounds for p have been derived which uti-
lize two sets of structured scaling matrices. These scaling

matrices axe similar in structure to the uncertainty block
structure.

Z) { D D" diag (D_ D_ D c c ,= = = ...... D,_d,...d;)

:D_i •Ca, Xn',D c•cc'xc',d_•C}

The set of scalings _ affect only the real parametric un-

certainty blocks.

= {G = G" = diag(Ga...V_0...0): G, • C n'_R'}

Define an upper bound for real/complex p [10, 27].

p(M)< inf _((DMD -1 +jG)(I+G2) ½)
- D•D

G•g

The structured singular value provides a measure of ro-
bustness in the presence of the defined structured uncer-

tainty. The :D and G matrices are allowed to vary with

frequency for linear, time-invariant (LTI) uncertainty.

These scalings are restricted to be constant when com-

puting robustness in the presence of linear time-varying

(LTV) uncertainty [24].

The objective of control design is to maximize robust

performance which corresponds to minimizing p in this

framework. An approach to output feedback control de-

sign which minimizes complex # is called D - K itera-

tion. This technique is used to synthesize output feed-
back controllers for the flexible structure example. D-K

iteration tries to achieve the desired robust performance

objectives by integrating ?/oo control design with com-

plex p analysis [2, 9, 19]. D- K iteration alternately

minimizes the complex # upper bound with respect to"

K or D holding the other variable constant. This tech-
nique has been applied with great success to a variety

of aerospace applications despite a lack of guarantee to

reach the global optimum [2, 14, 23]. A more detailed
discumion of D - K iteration can be found in Refer-

ences [2, 20]. An approach to minimizing the p upper
bound for the full information case is presented in the

following section.
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Optimal Full Information Controllers

An algorithm to compute the optimally scaled, _00 full

information (FI) controller f6r a system with linear, time-
varying (LTV) uncertainty is presented by Packard et.

al [2l, 22]. This algorithm considers the synthesis prob-

lem with constant D scalings included to allow infinitely

fast time variation in the complex uncertainty. This sec-

tion outlines this synthesis procedure and presents the

main theorem given in Reference [21].

The open-loop system considered is a continuous-time

plant. The controller is provided with direct measure-
ment of the states and disturbances and is called the

full information plant. Define Pji as the full information
plant,

0 I 0

The cl_ed-loop 7"{_ norm condition is shown to be

equivalent to a maximum singular ",;alue condition in-

volving the constant matrix form of the discretizedfull

information plant. The following theorem demonstrates

thisequivalency [21].

Theorem 0.1 Given the full information plant, Pli(s),

and the constant matriz discrete-time plant, Pli, along
with the set _D of scaling matrices, then the following are

equivalent.

1. There exists D E D and stabilizing K such that

IlO_Fa(Pj,(s), K)D-½1100 < 1

2. There ezists D E 29 and stabilizing K along with

real X = X T > 0 such that with Z = diag(X, D).

The resulting constant matrix problem has two scaling
matrices, D and X. D is the original constant matrix that

scales the plant inputs and outputs. X is the symmetric

positive definite solution matrix in the Riccati formula-

tion of the 7/oo problem. It scales the inputs and out-

puts of the discrete-time state equation. The X matrix is
included in the singular value test to restrict the eigen-
values of the discrete-time state matrix to be less than

one to guarantee stability.

Now perform a change of variables. Denote the entries
of the discrete-time plant as {R,U, V,T} and introduce

Q to replace K(l + TK) -1 in the closed-loop LFT for
notational convenience.

Ft(f_li. K)= R+ UK(I + T/'x')-t V = R+ UQV

A variant of Parrott's theorem is used to formulate two

maximum eigenvalue conditions equivalent to the con-

stant matrix singular value condition introduced in The-

orem 0. I. The resulting eigenvalue condition is presented
in Lemma 0.2.

Lemma 0.2 G_ven the discrete-time plant, PIi, formu-

late the closed-loop LFT as Fj(PI_, K) = R + UQV and

define U_. such that [U U±] is ,nvertible and UTU± = O.
Then

QE$IP)
ZEZ

if and only if lhere ezisls Z E _ such that

-A(ur( Rz-_ R r - Z-_)V±) < 0

The proof follows directly from Parrott's theorem [16,

21]. There is an additional eigenvalue condition involving
the matrix Vand a perpendicular component V± defined

similar to U±. The V matrix in the LFT of the closed-

loop system with the full information plant is square and

invertible so V± is null. The maximum eigenvalue condi-

tion utilizing this variable is automatically satisfied. The

remaining maximum eigenvalue condition is a linear ma-

trix inequality (LMI) with the scaling matrix as the free
parameter.

The 7/o_ synthesis problem for the continuous-time full

information system is thus reduced to a single constant

matrix maximum eigenvalue problem using elements of

the discrete-time full information system. The following

theorem summarizes the synthesis procedure for systems

with infinitely fast varying LTV structured, complex un-

certainty [21, 22].

Theorem 0.3 Given n,-state full information plant,

Pli, and the set D, define the following.

1. the augmented scaling matrices 7-,

d

I_. matrices R, U

R = x/_CI(I - A) -1 Eli + Cl(I - A)-IBI

U=[ V_(I - A)-1B2 ]EI_ + Cl(I - A)-IB_

3. matriz Uj. such that [U U±] is orthogonal

Then, there ezists a s_abilizin# controller matriz K and
a constant D E D such that

if and only if the following convez set is nonempty.

{Z e Z: A,,°, [U_ (RZn" -°_Z) U±] < 0} # {0}

The optimal controller gains may be computed by scaling
the continuous-time plant with the constant "D matrices

and utilizing standard 7"/00 state-space algorithms given

in Reference [9].



Thissynthesisalgorithmassumescomplex uncertainty

for the system. These results are extended to directly
account for real parametric uncertainty in the control

process [3I. Accounting fo_ real uncertainty may sig-
nificantly increase the number of free parameters and

consequently the required computation time for synthe-
sis. The next section considers the cost of synthesizing

optimal controllers with respect to complex uncertainty.

The same arguments apply to the cost of synthesizing

optimal controllers with respect to real uncertainty.

Implementation of LMI Synthesis

The previous section demonstrated optimal synthesis for
full information feedback reduces to a single linear ma-

trix inequality. LMI's may be solved using standard con-

vex optimization methods. This section investigates im-

plementation issues and computational cost associated
with solving the optimal full informgtion synthesis prob-

lem. The convergence characteristics of algorithms are
not discussed but rather the cost at each iteration of the

minimization is dicussed.

There are many convex optimization algorithms that

may be used to solve linear matrix inequalities. The El-

lipsoid Method and the Method of Centers have received

a great deal of attention in recent control literature. The
Method of Centers is an interior point algorithm that has

been shown to be very efficient for a variety of systems

and control problems [1, 7, 8, 13, 18]. Computational ex-

periments indicate this method suffers from the type of
constraints introduced in the full information synthesis

formulation. This paper will concentrate on the Ellipsoid

Method.

The Ellipsoid Method utilizes a subgradient vector to

compute an optimizing direction for the function to be
minimized. The subgradient is defined as follows [25].

Definition 0.4 The function f : C '_ ---. C has the set of

subgradients, S, at z.

S -" {g : f(y) _ f(x)-F < g,y- x > V y}

The subgradient vector obeys rules similar to the gradi-
ent vector and is equivalent to the gradient at differen-

tiable points of the function. The use of the subgradient

allows the Ellipsoid algorithm to be applied to minimiza-

tion problems involving nondifferentiable functions.

The Ellipsoid algorithm is most easily visualized in a geo-

metric framework [5, 6, 7]. This algorithm operates on an

n-dimensional space to minimize a function with n free

parameters. An ellipsoid is defined in the n-dimensional

space within which the optimal solution is assumed to

lie. Each iteration of the algorithm computes a new el-

lipsoid of decreasing volume. The center point of each

ellipsoid is tested each iteration for optimality. A subgra-

dient condition at the center point is used to eliminate a

portion of the current ellipsoid that cannot contain the

optimal point. A new ellipsoid is then computed such
that its volume is the smallest possible while still con-

taining the region of the old ellipsoid that may contain

the minimizing point. The optimal.solution, when found,
is the center of the last computed ellipsoid.

The initial ellipsoid for the algorithm must, of course, be
chosen such that it contains the optimal point. There is

no known method to guarantee choosing an ellipsoid that

contains this point. It has been shown in practice that

selecting the initial ellipsoid to be a large ball centered

at the origin is often a good choice.

Many factors, including numerical conditioning of the
matrices and choice of initial ellipsoid, greatly affect the

convergence properties of the Ellipsoid Method. It is
difficult to formulate an upper bound that is not overly

conservative on the number of iterations required. Prob-
lems of similar dimension have been shown in practice

to require as few as several thousand or as many as sev-
eral hunderd thousand iterations for convergence. The

computational cost of each iteration is more tractable for

analysis.

Theorem 0.3 presented the LMI formulation for synthe-
sis. This LMI involves minimizing the maximum singu-

lar value of a matrix function by searching over a set of

allowable scaling matrices. Consider the set, Z, of scal-

ing matrices for a system with n, states and associated
uncertainty scaling matrices/9 with dimension n,_.

0 D : D E D E l:t n'- ×'_-

Every Z E Z is a block diagonal matrix whose blocks
must be symmetric and positive definite. Symmetry is

assured in the computation algorithm by only optimizing

over the unique entries of each block. Restricting each

block to be positive definite arises as a set of constraints
of the LMI.

The actual optimization problem to be solved is pre-
sented below explicitly stating the constraints. Consider

a system with nb uncertainty blocks and associated nb

blocks in ,the D scaling matrices. Define Dl, D._,..., D.,

as the blocks in the scaling matrices.

rain X(U_. (RZR" - a2Z) Uj.)
2_EZ

subject to Z0 = .\" > 0
Zl = DI > 0

Z., = D.. > 0



Thetotalnumberof freeparametersforthiscalculation
canbecalculatedusingthe numberof states,n,, and
theparametersfor thedimensionsofeachtypeofblock,
Ci,c, and Ra. Consider there are ½a(n + 1) free param-
eters for a real, symmetric matrix of dimension n. The

total number of free parameters is given as N.

n,(n. + 1) _ R,(R, + I) x2-,Ci(C, + i)
N

2 + 2.-, " 2 + 2_, 2 +P
i=i i=I

The term involving the number of states, n,, is the num-

ber of free parameters in the symmetric X scaling matrix.

The first summation term computes the number of free

parameters in the 29 matrices for the real parametric un-

certainty blocks. The second summation term computes

the number of free parameters in the 29 matrices for the

complex parametric uncertainty blocks. The final term

considers one free parameter for each scalar 29 matrix to
commute with the complex full block uncertainties.

The main cost of each iteration in tl_e Ellipsoid Method

is due to computing eigenvalues. The function to be min-

imized is a maximum eigenvalue that must be computed

at each iteration. Additionally, the maximum eigenvalue
of each constraint matrix must be computed at each it-

eration. The Ellipsoid Method computes a subgradient
associated with the function that is the most violated, ei-
ther the main function to be minimized or the constraint

matrices.

The matrix dimensions can be calculated for each eigen-
value computation• Consider the dimensions of the R

and U± matrices presented in Theorem 0.3 for scalars

n,, the number of states, no, the number of control sig-

nals and nt,, the number of uncertainty signals.

R E R (n'+n')x("'+"') Ua. E R (n'+"')x('*'+'_'-'_°)

The dimension of the function whose maximum eigen-

value is to be minimized can be computed.

(RZR" - E R (°'+"--"-)X("'+",-°o)

The dimension of the matrix in the first constraint func-

tion is the number of states, n,, and the dimension of

the matrix in the remaining constraint functions is sim-
ply the dimension of each block in the scaling matrix,

C,-,c_ or/_.

Computing the maximum eigenvalue for the minimiza-
tion function is generally going to be the largest com-

putational cost at each iteration. It is easy to see this

dimension can become quite large for plant with a large

number of states and many uncertainties. The polyno-

mial or exponential nature of most algorithms indicates

the computational cost for this eigenvalue problem makes

this optimal synthesis impractical for high order systems
on standard workstations.

The eigenvector associated with the maximum eigenvalue
must also be computed. A subgradient may be formu-

lated utilizing this vector. The following lemma demon-

strates the subgradient calculation for the function to be
minimized.

Lemma 0.,5 Define the function f(X) = -A(A°XA) for

a given matrix A E C "Xn and matrix X in the set of

ltermitian matrices X = {X : X = X" E C"x"). De-
note v E C n as an eigenvector corresponding to the max-

imum eigenvalue off(X). The following g is a suitable

subgradient for f(X) for some unit vector rI E C'*.

g = AvlTO'v'A"

Proof Use standard linear algebra properties to show the

following for X,_ E X and the inner product defined as

< A,B >= Tr(B'A).

+ =

>

>
I

>

>

>
I

max u'(A'XA)u + u'(A'XA)u
U'U=I

u'(A'XA)u + u'(A'XA)u

O'v'(A*XA)vr I + rl'v'(A*XA)vrl

"X(A'XA) + (O'v')(A"-XA)(vrl)

-_(A'XA) + rr CX(AvrFI°v'A'))

-_(A°XA)+ < g,-X >

Definey=X+X andz=X to show

X(v) >__(_:)+< g, v - -">

which satisfies the definition of a subgradient. 12

Most of the common operations performed in the al-

gorithm are standard matrix-vector and matrix-matrix

computations. Several software packages and libraries
implement these as Level 2 and Level 3 BLAS subrou-

tines. These routines may be highly optimized for a par-

ticular architecture. The efficiency of Level 2 and Level 3

BLAS routines can often be enhanced by implementing

vectorized code. Unlike most workstations, Cray super-

computers are designed for vectorized algorithms. The

LAPACK package directly implements vectorized BLAS
routines. This paper utilized the LINPACK, EISPACK

and LAPACK packages for code generation.

Analysis of the matrices utilized in the synthesis algo-

rithms demonstrates there is no apparent structure or
sparcity that may be exploited. Previous LMI optimiza-

tions have been performed with thousands of free pa-
rameters on a standard workstation by exploiting signif-

icant structure in the computations. This algorithm will

not demonstrate those qualities for a general engineer-

ing problem. The problem dimensions can become large

enough that this algorithm is impractical for a standard

workstation. This paper utilizes a Cray supercomputer

for solving a large order synthesis problem.



Flexible Structure : Model

Controllersare designed for vibrationattenuationof an

experimental flexiblestructure.The flexiblestructurein

this example isconstructed at the Dynamics and Con-

trolsLaboratory in the Department of Aerospace Engi-

neering and Mechanics at the Universityof Minnesota.

The structure is designed to place 12 lightlydamped

modes between 0 and I00 rad/sec. The flexiblestructure

isgiven in Figure I.

linear working range of -6.5 inch.

Bay 3 are given in Figure 2

Control elements of

Figure 2: University of Minnesota Flexible Structure -
Bay 3

Experimental transferfunctions are formulated from the

actuators to the displacements by commanding sinusoids

ofvarying frequency to the actuators. System identifica-

tion using curve fittingtechniques and model reduction

via balanced reduction computes a 22thorder model [17].

Transfer functions for the model from actuators to the

displacement sensorsare given in Figures 3,4 and 5.

Figure 1: University of Minnesota Flexible Structure

The structure consists of a rigidly held fixed top plate
and four hanging bays. Each bay contains an aluminum

plate. The top four plates are spaced .62 m apart while

the bottom plate is .47 m below the third bay. Plates in

Bay 2 and Bay 4 are triangular frames while the other
plates are solid. Each bay is connected by thin hollow

rods at the corners of the plates. All components of the
structure are aluminum.

Bay 3 contains sensors and actuators for control. Di-

agonal rods connnect the top and bottom platesof this

bay. Colocated linearforceactuators and displacement

sensorsare placed along the diagonal rods.The forceac-

tuatorsare voice-coiltype actuators produced by North-

ern Magnetics with a limitof 4-2 pounds of force.The

displacement sensors are Trans-Tek 0242 sensors with a

10 _

I0 °

10"_

i0 "t

I0"

I0' 10 t

_ Om'UeC)

Figure 3: TransferFunction from Actuators toDisplace-
ment Sensor I for 22_hOrder Model
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Figure 4: Transfer Function from Actuators to Displace-

ment Sensor 2 for 22th Order Model

10' r

I0'

t10"

/
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)0 _ I0 _

In_uency (ta_i,s4m

Figure 5: Transfer Function from Actuators toDisplace-
ment Sensor 3 for 22th Order Model
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Flexible Structure : Control Objectives

It is desired to formulate controllers to attentuate vibra-

tions and lower the peak gains of the open-loop system•

The peak gains should be reduced approximately by a
factor of 5 for modes less than 70 rad/sec. Performance

weightings are included on the displacement measure-
ments to account for the desired levels.

= W_,er ! =w "l = H w;%

Input multiplicative uncertainty is included to account

for unmodeled dynamics and neglected high frequency

modes. A dynamic weighting, W, nutt, is included on each

actuator input channel.

W,... = 10(s(S + 1)+ 1000)

This weighting function puts 1.0% uncertainty at low fre-

quency and 100% uncertainty at 100 rad/sec with 1000%

uncertainty at high frequencies above 1000 rad/sec.

Parametric uncertainty is included in the plant model

to account for inaccuracies in the modal damping co-

efficients provided by the system identification algo-

rithm [4]. Consider the state space representation of a
second order system.

s -_+s2_(+_2 = -w- - ( 11 0

An additional input signal and output signal is included

in the plant model to account for uncertainty in the

damping coefficient (. A weighting W is included to scale

the magnitude of the uncertainty parameter 6¢ which is

norm bounded by 1 in the # framework.

1

s 2 + s2w((1 + W6¢) +ca 2 - 0 ,]001_w2 -2w( 1 1
0 -2_(W" 0 0
1 0 0 0

Damping uncertainty is only included on the modes near

60 rad/sec in the range of the performance weighing.

These 4 modes have 50% uncertainty in the damping

coefficient while the remaining low and high frequency
modes have no damping uncertainty. The frequencies of

the 11 modes and the range of damping coefficients are

given in Table 1

..frequency (rad/sec)
11.6
11.7
12.1
20.9
33.7
33.9
61.4
63.4
64.2
64.4
94.4

_norninal

.0293

.0269

.0021
.0228
.0159
.0157
.0084
.0142
.0152
.0116
.0101

Table I: Modal Frequency and

(ma= (rain

.0126 .0042
.0213 .0071
.0228 .0076'
.0174 .0058

Damping Values

The control signal is affected by a disturbance input. A

constant weighting of Wai,_ = .5 is included to normal-

ize the disturbance signal affecting each control channel.
Sensor noise is also included in the system to affect the

displacement sensor measurements. Constant weightings

of Wnoi,, = .5 is included to normalize the noise affecting
each sensor measurement.

The magnitude of the control signal is included as a per-
formance error to limit the amount of control actuation.

A weighting of W, ct = .2 is included to normalize the
control measurement for each actuator.



The open-loop plant model with uncertainty blocks and

weightings is given in Figure 6.

e,r 

noi_

dis dacement
measurement

"----" __m disturbance

i

actuator
penalty

Figure 6: Open-Loop Flexible Structure Block Diagram

Flexible Structure : Control Design

The system given in Figure 6 contains two types of un-

certainty.The parametric block representinguncertainty

in the damping coefficientsisgiven as A¢. The damp-

ing coefficientsateach mode are independent ofthe other
modes so thisblock isa scalaruncertaintyblockwith four

uncertainty parameters. The multiplicativeuncertainty

in the control signal,A_.., isa fullblock uncertainty

matrix with 3 inputs and 3 outputs. The uncertainty

block structure isA.

A -- diag{Sz, 52, 53, 64, Amut,}

The modal damping coefficient uncertainty parameters,

51,..., 64, are real parameter variations. Varying the

magnitude of 6i between 4-1 implies the damping coef-

ficient G for the i th mode varies between the maximum
and minimum values given in Table 1. They are treated

in the synthesis procedure are complex variations but

they are considered as real parameters in the analysis.
The multiplicative input uncertainty contains magnitude

and phase information and is treated as a complex linear,
time-invariant uncertainty.

The uncertaintyblockstructureisaugmented with a per-

formance block for computing robust performance. The

performance block isa fullblock uncertaintymatrix with

6 inputs(3 disturbanceand 3 noisesignals)and 6 outputs

(3 errorsand 3 actuator penalties).This block isalways

treated as a complex linear, time-invariant uncertainty.

An optimal full information controller is computed for

this system. This controller, Krt, is synthesized as-

suming all uncertainty parameters are complex, time-
varying. A future project will provide computational

resources for synthesizinga controllerthat directlyac-

counts for the additionalphase information provided by

the real uncertaintyparameters.

An output feedback controller is also designed for this

system using D-K iteration. The feedback measurements
to the controller are noisy signals from the displacement

sensors. This controller, denoted KoK, is of order 34

after a single D-K iteration. KDK assumes all uncer-

tainty is complex time-invariant. The Bode plot of KOK

is given in Figure 7.
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Figure 7: Bode plot of controller KDx

The closed-loop transfer functions for the controllers are

given in Figure 8. Each controller attenuates the re-

sponse at the natural frequencies. The full information
controller is an optimal controller and achieves better at-
tenuation levels than the output feedback controller. The

low frequency performance of Kt)g is especially poor.
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Figure 8: Closed-Loop Transfer Functions
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Flexible Structure : Robustness Analysis

Robust stability with respect to time-invariant uncer-

tainty may be analyzed for the linearized plant model
for each controller using the #-Analysis and Synthesis

Toolbox [2]. The upper and lower bounds for robust sta-

bility/_ with respect to real and complex uncertainty are

given in Figure 9. The # values achieved are .90 for KDK
and .93 for KFI.
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Figure 9: Real/Complex Robust Stability p

The p values for robust stability with respect to all com-
plex uncertainty are similar to Figure 9. Treating the

parametric damping uncertainty as complex does not de-
crease the robustness of either controller.

Robust stability for each controller is driven by the un-

certainty at the higher modes. The eDeak /J values oc-
cur at frequencies of the modes whichcontain damping
uncertainty and a significant amount of multiplicative

uncertainty. Robust stability is achieved at low frequen-

cies where the uncertainty is low and also at frequencies

higher than the natural frequencies.

KDK achieves a lower robust stability p value than the

optimal controller KFI. This does not contradict the

synthesis theory. Krt is designed to minimize robust

performance and does not directly consider robust sta-

bility.

Nominal performance is also computed for both con-

trollers. The p values achieved are 1.18 for KDK and

.46 for Krl. The output feedback controller is unable

to meet the performance specifications at low frequency
while the full information controller achieves the desired

performance goals over all frequencies. The nominal per-

formance p values agree with the poor low frequency

performance shown in the closed-loop transfer function

in Figure 8. The nominal performance # values are given

in Figure 10.
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Figure 10: Nominal Performance p

The robust performance p for each controller is given in

Figure 11 for mixed real and complex uncertainty. The
robustness levels are not noticeably changed by consid-

ering the damping uncertainty as complex or real. The
robust performance levels achieved are 1.23 for KDx and

1.09 for Krl.

Figure 11 shows the full information controller is able
to achieve a robust performance /_ value less than the

output feedback controller. /J for KF! is approximately
20% less than KDK with complex and real uncertainty.

Neither controller is able to meet the desired robust-

ness and performance specifications for the amount of

included uncertainty. KFI shows p close to the desired

levels and is only 9% from the desired goal. A reduction

to 1/1.09 or 92% of the amount of input uncertainty re-

sults in Krl achieving robust performance.

Robust performance for each controller is not affected by
restricting the damping uncertainty values to be purely

real. The output feedback controller, KDK, is driven

by the additive noise which affects the achievable perfor-



manceat lowfrequency.Thefull informationcontroller,
Krt, is driven by the input multiplicative uncertainty

at the high frequency modes. The additional damping
uncertainty increases the level of difficulty in designing a

controller but restricting that uncertainty to be real does
not increase robustness for the controller. It is unclear

that including real uncertainty in the synthesis algorithm
would lead to more robust controllers.

Time simulations of the open-loop and closed-loop sys-

tems for each controller for the linearized plant model

are given in Figure 12. The full information controller
achieves the desired attenuation while the output feed-

back controller shows slightly less attenuation.
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Figure 12: Time Simulations

Flexible Structure : Computational Cost

The computational cost of computing the optimal full in-

formation controller is dependent of the number of free

parameters in the optimization. This number is deter-

mined by the number of states and the uncertainty struc-
ture in the set Z in Theorem 0.3.

The open-loop system given in Figure 6 shows the block
diagram for control synthesis. This system contains

25 states from the flexible structure and weighting ma-

trices. The uncertainty block structure contains 4 scalar

blocks to represent the parametric uncertainty and a full

block for the multiplicative uncertainty. The total num-
ber of free parameters is N.

= _25(25+1)+4+1 =N 330

Each iteration of the optimization algorithm computes
several eigenvalues and eigenvectors. The largest matrix

used for the eigenspace computation is the matrix func-

tion of dimension 38 given in Theorem 0.3.

U 1 (RZR" - a2g) Uj. E lrt aaxas

A single processor Cray-XMP supercomputer is used to

compute the optimal controller in this paper. The al-

gorithm implements a bisection search for the lowest
achievable /_ upper bound. The number of iterations

required for each /i level are shown below.

p level iterations result
1.10 330261 controller exists
0.75 335701 no controller exists
0.92 394868 no controller exists

Standard workstations were initially utilized for con-

troller synthesis since the eigenspace dimension is not

extreme. The algorithm was terminated after several

days without reaching an optimal controller. Each itera-

tion with the eigenspace computation took only 1 second

approximately but this implies 11 days are required to
compute the million iterations needed for the controller

synthesis.

The Cray supercomputer is able to directly utilize vector-

ized loops in the eigenspace computation to significantly
reduce the execution time for each iteration of the op-

timization. The execution time to compute the optimal

controller was approximately 6 hours.

Conclusion

This paper considers a computational algorithm for op-

timal controller synthesis. The formulation of a glob-
ally optimal controller for full information feedback is

shown to reduce to an LMI optimization. Implemen-

tation of this optimization using the Ellipsoid Method
requires many expensive eigenvalue and eigenvector com-

putations. A flexible structure is presented as an exam-
ple to synthesize controllers for vibration attenuation.

The resulting problem formulation is of large enough di-
mension with no apparent sparcity or structure that a

standard workstation requires several days for the com-

putation. A vectorizing Cray supercomputer is used for
synthesis.
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